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4 SUMMARY

A multigrid cell-vertex finite volume Euler method has been
used to calculate steady inviscid transonic flow past the ONERA M6
wing. The treatment of the far-field boundary conditions includes
the effect of velocity perturbations generated from Klunker's
analytic asymptotic solution to the transonic small-disturbance
equation. The geometry of the wing tip is modelled with three suc-
cessively finer C-0 grids. The results obtained show marked differ-~
ences in comparison with those obtained on C~H grids. They indicate
that a shock-wave mechanism can contribute to the generation of tip
vortices in compressible inviscid flow, and that for reliable pre-
diction of wing performance it is important to model well both the
wing-tip geometry and the flow around the tip. ﬁﬂ/u¢-f-'

* This paper was presented at IUTAM Symposium Transsonicum III,
Géttingen, 24-27 May 1988. y
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1 INTRODUCTION

The work of Ni‘ has been extended in two and three dimensions by Hall2 and
Salmond3. Numerical solutions to the Euler equations for transonic lifting flows
past aerofoils and wings are obtained by approximating the steady flux balance
for each computational cell using values of the flow variables stored at the
vertices of each cell. A Lax~Wendroff time-stepping algorithm is used to update
each variable, with boundary conditions where appropriate, and these changes in
the solution are then used on coarser meshes to accelerate the convergence of the
solution to the steady state. This paper describes some recent developments,
mainly in the imposition of far-field boundary conditions and in the modelling of

the flow around the wing tip.

The usual practice in calculating the three-dimensional flow past a wing
has been to set conditions on the far-field boundary equal to the free-stream
conditions. This assumption is loosely justified by the knowledge that, except
in a wake, a disturbance would decay more rapidly with distance in three dimen-
sions than in two. Here, instead, we replace the free-stream conditions by a
three-dimensional far-field solution. For 'inflow' the conditions are derived
from the transonic small-disturbance approximation of Klunkerd, while for 'out-
flow' a perturbation pressure related to the cross-flow in the numerical solution
is prescribed. The results are expected to be more accurate than those given by
assuming free-stream conditions and to provide an indication of the range of
validity of the latter assumption. Comparisons are shown for a range of distances

from the wing to the far-field boundary.

It is becoming recognised (for example, see Ref 5) that the resolution of
flow detail at the wing tip requires both the representation of the tip geometry
and the use of an appropriate grid around the tip. We outline here the steps
taken in generating C-0 grids from C-H grids formed by spanwise stacking of two-
dimensional planar C-grids. Results are shown for calcuiations performed on the
ONERA M6 wing using both C-H grids and three successively finer C-0 grids. We

begin however with an outline of the basic numerical method.

2 CELL VERTEX FINITE VOLUME EULER METHOD

Since only the steady state is of interest the unsteady Euler equations in

three dimensions are expressed in conservation form as the isenthalpic system

u_ + fu)

u te@ thw, = 0, )

X




where the state vector u and the flux vectors f(u), g(u), h{u) are given

as follows:

o pu cv ow !
pu P+ fu pvu cwu |
u = s f(l_-‘) = I 8(1_1) = > h(E) = .
ov puv P+ pvz oWV
2
pw puw ovw p + ow

Here p 1is the density, u, v, w are Cartesian components of velocity and p

is the pressure given by Bernoulli's equation
p = %(l°£(v-l)(u2+v2+w2)) ,

where vy 1is the ratio of specific heats, taken to be 1.4. The equations have
been non-dimensionalised with respect to a typical length, stagnation sound

speed and stagnation pressure.

Integrating equation (1) over a control element of volume V and using
the divergence theorem yields for the steady state the boundary integral (or

residual)

1
Vf (f,g,h).ds = O . (2)

Dividing our region of physical space surrounding the wing into hexahedral cells
we seek to approximate equation (2) for each cell. The fluxes through each of
the faces of a particular cell are calculated from the values of the flow vari-
ables stored at the vertices of that cell (see Fig 1) and are summed to give the

net flux into the cell,

Given an initial flow the steady solution u satisfying equation (2) for

all cells is obtained by a Lax-Wendroff time-marching algorithm. From

equation (1) the change in the solution, Sgn = gn*l - gn , in time-step At 1is
given by
5
o _AtT )y [5f By ) g_glau) 3 ahg)
Tuoo= dlf + By * h,) 2 {3x (3: _f) * 3y (3_ e/ " 3z du at - 3
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The two parts of the change &6u at the point P are calculated as follows (sc2
Fig 2). The first term in expression (3) is given by averaging the residuals (2)
for the eight cells surrounding P . The second term is recast by integrating
over the inner hexahedron surrounding P formed by the centres of the eight
cells. The divergence theorem again yields an integral over the surface of this
hexghedron, evaluated as before, the values of the flow variables used being

obtained as-averages of the values at the vertices of the eight cells.

To prevent odd-even point decoupling and to capture shock-waves an arti-
ficial viscosity is added to 6u . Comvergence accelerationis achieved using
local time-stepping and a multigrid procedure. Changes in the solution on the
coarse grids are interpolated linearly to the finer grids as previously but are

then smoothed by an averaging operator.

3 FAR~FIELD BOUNDARY CONDITIONS

In the present method the inflow condition is that the two components of
velocity in the plane locally tangemtial to the boundary are specified together
with an isentropy condition for the density. To determine corrections to the
free-stream condition in the far~field we firstly consider Klunker's expression
for the transonic small-disturbance potential ¢ at a point P(x,y,z) . In the
far-field Klunker shows that the dominant term is that representing the lifting

effects of the wing, namely the following integral over the wing surface (see

Fig 3)
= 2 Au x = f
% % = f (_n)2+:2(’* R)"S' ()
wing y
surface

where &, n are local coordinates on the wing and R2 = (X - 5)2 + Bz(y-n)z *

3222 with 62 =1 - Mi . Au 1is interpreted here as the difference in pressure
between the upper and lower surfaces. Due to deficiencies in the potential model
@p is only a good approximation away from the wake, and in fact is only used to

generate perturbations to the velocities given at 'inflow'.

¢ is differentiated to give expressions for the perturbations (&u,dv,8w)
from the free-stream velocities (u_,v_,w_). The resuiting integrals are evalu-
ated numerically for each point P on the 'inflow' part of the far-field bound-
ary. The modified velocities (v, + Su, v+ Sv, W+ dw) are then used to cal-
culate the two imposed components of the tangential velocity. If the perturba-

tions are set to zero we regain the free-stream boundary conditions.
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At outflow a boundary condition on pressure p 1is assumed which includes

the effect of the component of velocity 9, normal to the free-stream direction.

It can be shown that if variations in the function p/oY are small, and if at

outflow

u2+v2#w sqm‘fq

where q_ is the free-stream velocity, then the Bernoulli equation can be

approximated by

- -1 2\ YD
o = (pg RIAE- qi)

This is the assumed condition.

4 WING TIP MODELLING

The stages in producing a C-0 grid from the C-H grid comprising two-

dimensional planar C-grids stacked spanwise are as follows:
(i) discard the C-grids lying beyond the wing tip;

(ii) complete the surface closure for the M6 wing using circular arcs as
continuations of the wing generators. The (finest) surface grid has

each arc subdivided into 32 equal segments;

(iii) as sketched in Fig 4, rotate the C~grid corresponding to the tip
station 180° about an axis running chordwise through the leading and
trailing edges. Equal subdivision of the arcs swept out provide the
field grid. Lines of semi-polar singularity are left along the axis

of rotation forward of the leading edge and aft of the trailing edge.

After these steps adjustments were made to produce the final grid. These inclu-
ded bending and packing of the C-grids to ensure smooth spanwise distributions,
the addition of a further 16 C~grids on the main wing, and contracting the grid
around the trailing edge of the tip where the tip radius is small. Thus from an
original C-H grid of 256 x 32 x 48 cells was produced a new C-0O grid of

256 x 32 x 64 cells. Details of the medium grid (128 x 16 x 32) on the wing sur-

face near the tip are shown in Figs 5 and 6.
5 RESULTS

The numerical method was used in two forms, appropriate to the C-H and

C-0 grids, to calculate the flow past the ONERA M6 wing, with M, = 0.84 and

RAANTRE
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@ = 3.06°. To evaluate the effect of the new boundary conditions the far~field
boundary was set at varying distances from the wing - 1.01, 1.69 and 3.37 spans
(3, 5 and 10 root chords respectively) - and the calculations performed with and
without the perturbations modifying the free-stream. The effect on CL Is shown
in Fig 7 for the calculations on the medium C-H and C-0 grids. With the free-

stream conditions the variation in C, 1is around 37 while for the perturbed con-

L
ditions it is around 0.7%. All subsequent calculations were performed with the

perturbed conditions with the boundaries set at 1.69 spans.

Next we detail the comparison between the tin flows on the medium C-H and
C-0 grids. The spanwise lift distributions in Fig 8 show a marked spike at the
tip for the calculation on the C-H grid, indicating a vortex. This is absent for
the calculation on the C-0 grid and examination of the cross-flow shows little
sign of a vortex, although the cross-flows are much larger than for the C-H grid.
Shown in Figs 9 and 10 are the upper surface Mach number contours in the tip
region for the two cases. As might be expected the flows are very similar inboard
but quite different at the tip. For the calculation on the C-0 grid the contours
near the tip trailing edge indicate the presence of high velocities there.

Finally we compare the calculations performed on the successively finer
C-0 grids. Fig 11 shows the value of CL plotted against (number of cells)—2/3,
the straight line indicating second-order accuracy. The spanwise lift distribu-
tions are plotted in Fig 12. Note the small kink at the tip for the finest grid;
indeed (Fig 13) a plot of the cross-flow velocities obtained on this grid, very

close to the trailing edge (98.57% chord), shows a region of recirculating flow.

The production of the recirculating flow, or tip vortex, can be explained
by examining the cross—flow upstream. Having become sonic at about 897 chord the
cross—flow Mach number reaches 3.0 at 96.57 chord. A shock in the cross-flow
plane can be seen in the velocity vectors and in the contours of cross—flow Mach
number in Figs 14 and 15 obtained on the finest grid. The corresponding plot of
total vorticity contours in Fig 16 shows that while some vorticity is produced at
the junction of the circular arc with the wing generator, more is produced through
the shock-wave. This vorticity is convected downstream and may therefore be the
origin of the vortex shown. Further work needs to be done to assess whether

separation is occurring in addition.

The marked differences between the results on the C-0 grid and those on the
C-H grid have important practical implications. They show that the flow pattern

around the wing tip and the associated spanwise lift distribution are strongly




misrepresented when calculations are performed on the commonly adopted C-H
grid. For reliable prediction of wing performance the wing-tip geometry and the

flow around the tip must be well modelled, at least for wings of low aspect ratio.
6 CONCLUSIONS

Ttmproved far-field boundary conditions and wing tip modelling have been
proposed and tested. The boundary conditions allow the distance to the far-field
boundary to be reduced considerably with little change in lift. Calculations on
C-H and C-0 grids show very marked differences in the flow at the wing tip, there
being a distinct tip vortex on the C-H grids. Although cross-flows are much
larger on the C-0 grids there is little sign of a tip vortex except for the
finest grid. 1In this case a vortex appears to originate at least in part in
vorticity generated by a shock in the cross—flow. For reliable prediction of
wing performance it is important to model well both the wing=-tip geometry and

the flow around the tip.
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Fig § Surface grid at the wing tip
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